AccuTrack Designer User Guide

Version: 1.0
Last Updated: 2024
Platform: Windows, Linux

Table of Contents

Introduction
Getting Started
User Interface Overview
Project Management
Working with Tags
Creating HMI Screens
Using Components
Scripting with Lua

9. Configuring Alarms
10. Communication Setup
11. Security Configuration
12. Schedules and Automation
13. Historical Data (Historian)
14. Building and Deploying
15. Device Management
16. Tips and Best Practices
17. Troubleshooting

O NG WD

Introduction
What is AccuTrack Designer?

AccuTrack Designer is a comprehensive SCADA (Supervisory Control and Data
Acquisition) configuration tool that allows you to design, configure, and deploy
industrial automation projects. It provides a complete environment for creating
HMI screens, configuring data points (tags), setting up alarms, writing automa-
tion scripts, and managing communication with industrial devices.

Key Features

e Visual HMI Design: Create interactive operator screens with drag-and-
drop components

o« Tag Management: Centralized database for process variables and data
points

e Multi-Protocol Support: Connect to devices via Modbus, OPC UA,
and other industrial protocols

e Lua Scripting: Add custom logic and automation with embedded Lua
scripting engine

e Alarm Management: Configure and manage alarm conditions and no-
tifications

e Security: Role-based access control and user management

o Historical Data: Configure data collection and trending

e Cross-Platform: Runs on Windows and Linux

Getting Started
System Requirements

o Operating System: Windows 10/11 or Linux (Ubuntu 20.04+)
e Qt Framework: Qt 6.10.1 or later

e Memory: Minimum 4GB RAM (8GB recommended)

e Disk Space: 500MB for installation, additional space for projects
¢ Display: 1280x720 minimum resolution

First Launch

When you first launch AccuTrack Designer, you'll see the Startup Page with
the following options:

1. Recent Projects: A list of recently opened projects (if any)
2. New Project: Create a new SCADA project

3. Open Project: Browse and open an existing project

4. Remove: Remove a project from the recent projects list

Creating Your First Project

1. Click New Project on the startup page, or use File — New Project
from the menu

In the file dialog, navigate to your desired location

Enter a project name (e.g., “MyFirstProject”)

Click Save (projects are saved with .isc extension)

The project will be created and automatically opened

Gt D

The project structure will be created with the following default folders: - Tags/
- Tag database files - Screens/ - HMI screen templates - Scripts/ - Lua script
files - Communication/ - Communication module configurations - Alarms/ -
Alarm configurations - Security/ - User and security settings - Historian/ -
Historical data configurations - Schedules/ - Scheduled task configurations

User Interface Overview

The AccuTrack Designer interface is organized into several key areas:

Main Window Layout

Menu Bar: File | Build | Download | Upload | Help

Project Editor Area Components
View (Tabbed) Palette

Bottom Panel: Output | Debug | Properties

Key Interface Components
1. Project View (Left Panel)

e Project Tab: Tree view of your project structure
— SCADA projects
— Tag tables
— Screens
— Scripts
— Communication modules
— Alarms
— Schedules
Historian
— Security
Machine Learning
Settings
e Devices Tab: Device discovery and management

2. Editor Area (Center)

e Tabbed interface for open editors

e FEach editor opens in its own tab

e Tabs can be closed individually

¢ Supports multiple screens, tag tables, and scripts open simultaneously

3. Components Palette (Right Panel)

e Visual components available for HMI screens
¢ Organized by categories:
— Basic Controls (buttons, inputs, etc.)

— Industrial Components (pumps, valves, tanks)
— Data Visualization (trends, gauges, tables)
— Layout Components (tabs, containers)

4. Bottom Panel

e Output Tab: Build output and system messages

¢ Debug Tab: Debug console and diagnostic information

e Properties Tab: Property editor for selected components
Menu Bar
File Menu

¢« New Project: Create a new SCADA project
¢ Open Project: Open an existing project
e Recent Projects: Quick access to recently opened projects
e Save: Save current project
e Save As: Save project with a new name
e Close Project: Close the current project
o Exit: Exit the application
Build Menu
e Build Project: Compile and prepare project for deployment
¢ Clean Project: Remove build artifacts

Download Menu

¢ Download to Device: Deploy project to a target device

Upload Menu

¢ Upload from Device: Retrieve project from a device

Help Menu

e Documentation: Open user documentation
e About: Application information

Project Management
Project Structure

AccuTrack projects are organized in a hierarchical structure:

ProjectName.isc
SCADA Projects/
SCADA_Name/
Tags/
Screens/
Scripts/
Communication/
Alarms/
Schedules/
Historian/
Security/
MachineLearning/
Settings/

Creating a New Project

1. File - New Project (or Ctrl+N)

2. Choose a location and enter project name

3. Project is created with default structure

4. Project automatically opens in the Project View

Opening a Project

1. File —» Open Project (or Ctrl+0)
2. Browse to the project file (.isc)

3. Select and open

4. Project loads in the Project View

Saving a Project

o File — Save (or Ctrl+S): Save all changes
o File — Save As: Save with a new name/location
e The system automatically saves:

— Tag tables

— Screen configurations

— Script files

— All module configurations

Closing a Project

1. File — Close Project
2. Any unsaved changes will prompt for confirmation
3. All open editors are closed

Recent Projects

The application maintains a list of recently opened projects accessible via: -
File — Recent Projects menu - Startup page recent projects list

Working with Tags

Tags are the fundamental data points in your SCADA system. They represent
process variables, I/O points, and computed values.

Understanding Tags

A tag is a named data point that can represent: - Input Tags (I): Values read
from external devices (PLCs, sensors) - Output Tags (O): Values written to
external devices - Memory Tags (M): Internal variables for calculations and
logic

Tag Data Types

Supported data types: - Boolean: True/False values - Integer: 16-bit, 32-
bit, 64-bit (signed/unsigned) - Float: 32-bit and 64-bit floating point - String:
Text data - Enumeration: Predefined value sets - Array: Collections of values
- Structure: Composite data types

Creating Tags

1. In Project View, expand your SCADA project
Right-click on Tags — New Tag Table (or double-click Tags)
The Tag Table Editor opens
Click Add Tag or press Insert
Configure tag properties:
o Name: Unique identifier (required)
e Description: Human-readable description
o Type: 1/0 type (Input/Output/Memory)
e Data Type: Boolean, Integer, Float, etc.
o Address: Device address (for I/O tags)
o Value: Initial/default value
o Min/Max: Valid range
e Units: Engineering units
e Scaling: Linear scaling factors
e Access Level: Security access level

Al S

Tag Table Editor

The Tag Table Editor provides: - Table View: Spreadsheet-like interface for
bulk editing - Search/Filter: Find tags quickly - Validation: Real-time vali-

dation of tag names and addresses - Duplicate Detection: Prevents duplicate
names/addresses - Bulk Operations: Edit multiple tags at once

Tag Addressing
For I/0 tags, addresses specify where to read/write data:

Modbus Examples: - 40001 - Holding Register 1 - 30001 - Input Register 1
- 10001 - Coil 1 - 00001 - Discrete Input 1

Bit Addressing: - 40001.0 - Bit 0 of Holding Register 1 - 40001.15 - Bit 15
of Holding Register 1

Tag Validation
The system validates: - Unique tag names within a tag table - Valid data types
for addresses - Range constraints (min/max) - Address format correctness

Using Tags in Screens

Tags can be bound to screen components: 1. Select a component on a screen 2.
In the Properties panel, find tag-related properties 3. Click the tag selector
(usually a ... button) 4. Browse and select the desired tag 5. The component
will display/control the tag value

Creating HMI Screens

HMI (Human-Machine Interface) screens are the visual interface operators in-
teract with.

Screen Editor

The Screen Editor provides a visual canvas for designing operator interfaces.

Opening the Screen Editor

1. In Project View, expand Screens
2. Double-click a screen, or right-click — Open
3. Screen opens in a new editor tab

Creating a New Screen

1. In Project View, right-click Screens — New Screen
2. Enter screen name and properties
3. Screen is created and opened in editor

Screen Canvas

The canvas provides: - Grid: Visual alignment guide (can be toggled) - Snap to
Grid: Automatic alignment - Zoom Controls: Zoom in/out/fit - Selection
Tools: Select, move, resize components - Layers: Z-order management for
overlapping components

Adding Components

1. From Components Palette:
e Click a component in the palette
e Click on the canvas to place it
o Component appears at click location
2. Drag and Drop:
e Drag component from palette
e Drop onto canvas
3. Copy/Paste:
o Select component(s)
e Ctrl+C to copy
e Ctrl+V to paste

Component Properties

When a component is selected: - Properties Panel (bottom right) shows all
properties - Properties are organized by category: - General: Name, posi-
tion, size, visibility - Appearance: Colors, fonts, borders, styles - Data: Tag
bindings, expressions - Behavior: Events, animations, interactions - Security:
Access levels, permissions

Common Component Operations
Moving Components

e Click and drag to move
o Use arrow keys for fine positioning
e Hold Shift for faster movement

Resizing Components

¢ Click and drag corner/edge handles
e Hold Shift to maintain aspect ratio
o Use Properties panel for precise dimensions

Aligning Components

o Select multiple components (Ctrl+Click)
o Use alignment tools (if available)
e Use grid snap for manual alignment

Deleting Components

o Select component(s)

e Press Delete key or right-click — Delete
Screen Properties

Each screen has properties: - Name: Screen identifier - Size: Width and height
in pixels - Background: Background color or image - Security: Required
access level to view screen - Navigation: Screen navigation settings

Screen Templates
Screens can be used as templates: - Create base screens with common elements
- Inherit from templates - Override template properties as needed

Saving Screens

e Screens are saved automatically when you save the project
o« File — Save saves all open screens
¢ Individual screens can be saved via right-click menu

Using Components

Components are the building blocks of HMI screens. They provide visual rep-
resentation and interaction capabilities.

Component Categories

1. Basic Controls Buttons - Standard push buttons - Toggle buttons -
Radio buttons - Checkboxes - Properties: Text, icon, colors, events

Text Input - Single-line text input - Multi-line text area - Numeric input (with
validation) - Password input - Properties: Placeholder, validation, format

Selection Controls - ComboBox (dropdown) - ListBox - RadioButton groups
- CheckBox groups - Properties: Options, default selection

Sliders and Spinners - Horizontal /vertical sliders - Numeric spinners - Prop-
erties: Min/max, step, orientation

2. Industrial Components Pumps - Visual pump representation - States:
Running, Stopped, Fault - Properties: Colors, animations, tag bindings

Motors - Motor visualization - Speed indication - Status indicators

Tanks - Tank level visualization - Fill percentage - High/low level indicators -
Properties: Capacity, units, colors

Valves - Valve position visualization - Open/closed states - Flow direction
indicators

Conveyors - Conveyor belt visualization - Direction and speed - Status indica-
tors

3. Data Visualization TrendView - Real-time trending - Historical trend-
ing - Multiple tag support - Zoom, pan, cursor inspection - Properties: Tags,
time range, colors, axes

GaugeView - Circular gauges - Linear gauges - Digital displays - Properties:
Min/max, units, colors, ranges

AlarmView - Alarm list display - Alarm status indicators - Alarm history -
Properties: Filter, sort, acknowledge actions

TableView - Data grid display - Tag value tables - Sortable columns - Proper-
ties: Columns, data source, formatting

4. Layout Components TabComponent - Multi-page layouts - Tab navi-
gation - Properties: Tab labels, pages, styling

PopupComponent - Modal dialogs - Overlay windows - Properties: Size, po-
sition, modal behavior

Container Components - Group boxes - Panels - Scroll areas - Properties:
Layout, borders, backgrounds

Adding Components to Screens

Select Component: Click component in Components Palette
Place on Canvas: Click where you want to place it
Configure Properties: Use Properties panel

Bind to Tags: Set tag bindings in Data properties

Test: Use preview mode (if available)

CU o=

Component Tag Binding
Most components can be bound to tags:

1. Select component

. In Properties panel, find Tag or Data Source property
. Click tag selector (... button)

. Browse tag tables and select tag

. Component will display/control tag value

U W N

Binding Types: - Read: Display tag value (read-only) - Write: Control tag
value (write-only) - Read/Write: Both display and control

10

Component Events

Components can trigger events: - Click: Button press, component click - Value
Changed: Input value change - Mouse Enter/Leave: Hover events - Focus:
Focus gained/lost

Events can be connected to: - Scripts - Screen navigation - Tag writes - Other
component actions
Component Styling

Components support extensive styling: - Colors: Background, foreground, bor-
der - Fonts: Font family, size, style - Borders: Width, style, radius - Shadows:
Shadow effects - Animations: Transitions, state changes

Component Libraries

Components are organized in libraries: - Access via Components Palette - Search
functionality - Category filtering - Custom components can be added

Scripting with Lua

AccuTrack Designer includes an embedded Lua scripting engine (v5.4.7) for
custom logic and automation.

Script Editor

The Script Editor provides: - Syntax Highlighting: Lua syntax coloring -
Code Completion: Auto-completion support - Error Marking: Visual error
indicators - Line Numbers: Easy navigation - Search/Replace: Find and
replace functionality

Creating Scripts

1. In Project View, expand Scripts
Right-click -+ New Script

Enter script name

Script Editor opens

Write your Lua code

Save script (automatically saved with project)

S Tt N

Lua Script Structure

-- Script: MyScript
-— Description: Ezample script

-- Global wvariables

11

local tagValue = 0O

-— Function definitions
function onStartup()
—-- Code ezecuted at startup
print("Script started")
end

function onTagChanged(tagName, newValue)

-- Code exzecuted when tag changes

tagValue = newValue

print("Tag " .. tagName .. " changed to " .. newValue)
end

function onTimer ()

-- Code ezecuted periodically

-— Access tags, perform calculations
end

Accessing Tags from Scripts
The Lua bridge provides access to tags:

-- Read tag wvalue
local value = getTag("TagName")

-— Write tag value
setTag("TagName", 100)

-- Check tag quality
local quality = getTagQuality("TagName")

Script Execution Contexts
Scripts can execute in different contexts:

1. Event-Triggered: Execute when specific events occur
e Tag value changes
o Button clicks
o Timer events
e Alarm conditions
2. Periodic: Execute at regular intervals
o Configure scan rate
¢ Continuous monitoring
e Background processing
3. Startup/Shutdown: Execute once
e System initialization

12

e Cleanup operations

Script Functions
Common script functions available:

-— Tag operations

getTag(name) -- Read tag value
setTag(name, value) -- Write tag value
getTagQuality (name) —-— Get tag quality

-- Alarm operations
acknowledgeAlarm(id) —-— Acknowledge alarm
shelveAlarm(id) -- Shelve alarm

-— System functions

print (message) -— Print to comsole
log(message, level) -- Log message
sleep(ms) -- Sleep for milliseconds

-— Math and utilities

math.sin(x) -- Standard Lua math
math.cos(x)
string.format(...) -— String formatting

Script Scheduling

Scripts can be scheduled via the Schedules module: 1. Create a schedule 2.
Select script to execute 3. Configure timing (daily, weekly, etc.) 4. Set execution
parameters

Script Debugging

Debugging features: - Console Output: Use print() to output messages -
Error Messages: Syntax and runtime errors displayed - Breakpoints: (If
supported) Set breakpoints - Step Through: (If supported) Step through
execution

Script Best Practices

1. Error Handling: Always handle errors

local success, result = pcall(function()
-— Risky code
end)

2. Performance: Keep scripts efficient

e Avoid tight loops

13

e Use appropriate scan rates
o Minimize tag reads/writes

3. Documentation: Comment your code

—-— Purpose: Calculate average temperature
-— Author: Your Name
-— Date: 2024-01-01

4. Modularity: Break complex logic into functions

5. Testing: Test scripts thoroughly before deployment

Configuring Alarms

Alarms notify operators of abnormal conditions and events in the process.

Alarm Types
Digital Alarms

o Trigger on Boolean tag state changes
¢ ON alarm: Triggers when tag becomes true
e OFF alarm: Triggers when tag becomes false

Analog Alarms

e Trigger on numeric tag threshold violations
e High: Tag exceeds high limit

e Low: Tag falls below low limit

e High-High: Critical high condition

e Low-Low: Critical low condition

Deviation Alarms

o Trigger when tag deviates from setpoint

e Deadband to prevent oscillation
Rate-of-Change Alarms

e Trigger on rapid value changes

o Prevents sudden spikes/drops
Creating Alarms

1. In Project View, expand Alarms
2. Right-click - Open Alarms Editor (or double-click)
3. Click Add Alarm

14

4. Configure alarm properties:

Basic Properties: - Name: Unique alarm identifier - Description: Human-
readable description - Tag: Tag to monitor - Type: Digital, Analog, etc.

Condition Properties: - Condition: Trigger condition - Threshold:
Threshold value (for analog) - Deadband: Hysteresis to prevent oscillation -
Delay: Time delay before triggering

Priority and Severity: - Priority: 1-100 (higher = more important) - Sever-
ity: Critical, High, Medium, Low - Category: Alarm category for grouping

Behavior: - Latching: Alarm remains active until acknowledged - Auto-
Acknowledge: Automatically acknowledge when condition clears - Shelving:
Allow temporary suppression

Alarm Editor

The Alarm Editor provides: - Alarm List: Table of all alarms - Filtering:
Filter by type, priority, status - Search: Find alarms quickly - Bulk Edit:
Edit multiple alarms - Validation: Verify alarm configuration

Alarm States

Alarms can be in various states: - Normal: Condition not met, no alarm -
Active: Condition met, alarm active - Acknowledged: Alarm acknowledged
by operator - Shelved: Temporarily suppressed - Cleared: Condition cleared,
alarm inactive

Alarm Actions

Alarms can trigger actions: - Notifications: Display messages, sounds
- Scripts: Execute Lua scripts - Tag Writes: Set tag values - Screen
Navigation: Navigate to specific screens - Logging: Log to historian

Alarm History

Alarm events are logged: - Event Log: All alarm state changes - Times-
tamp: When events occurred - Operator: Who acknowledged (if applicable) -
Retention: Configurable retention period

Alarm Display

Alarms are displayed in: - Alarm View Component: On HMI screens -
Alarm List: Tabular display - Alarm Banner: Top-of-screen summary -
Alarm Summary: Summary screen

15

Communication Setup

The Communication module configures connections to external devices (PLCs,
sensors, etc.).

Supported Protocols

o Modbus TCP/RTU: Industrial standard protocol
« OPC UA/DA: OPC Foundation protocols
e Custom Protocols: Extensible protocol support

Communication Module Editor

1. In Project View, expand Communication
2. Double-click Communication Modules to open editor
3. Configure communication settings

Modbus Configuration
Creating a Modbus Connection

1. Click Add Connection
2. Select Modbus TCP or Modbus RTU
3. Configure connection properties:

Modbus TCP: - Name: Connection identifier - IP Address: Device IP
address - Port: TCP port (default 502) - Unit ID: Modbus unit identifier -
Timeout: Communication timeout (ms) - Retry Count: Number of retry
attempts

Modbus RTU: - Name: Connection identifier - Port: Serial port (COMI,
/dev/ttyUSBO, etc.) - Baud Rate: 9600, 19200, 38400, etc. - Data Bits: 7
or 8 - Parity: None, Even, Odd - Stop Bits: 1 or 2 - Unit ID: Modbus unit
identifier

Modbus Scanner The Modbus Scanner helps discover devices: 1. Open
Device Manager tab 2. Click Scan for Devices 3. Configure scan parameters
4. Start scan 5. Discovered devices appear in list 6. Add to communication
configuration

OPC UA Configuration
Creating an OPC UA Connection

1. Click Add Connection
2. Select OPC UA
3. Configure connection:

Connection Properties: - Name: Connection identifier - Endpoint
URL: OPC UA server endpoint - Security Policy: Security policy (None,

16

Basic128Rsal5h, etc.) - Security Mode: Security mode (None, Sign, SignAn-
dEncrypt) - Username/Password: Authentication credentials - Certificate:
Client certificate (if required)

Node Browsing: 1. Click Browse Nodes 2. Connect to OPC UA server
3. Browse server address space 4. Select nodes to map to tags 5. Create tag
mappings

Tag Mapping

After configuring communication: 1. Map device addresses to tags 2. In Tag
Editor, set tag addresses 3. Addresses reference communication connections 4.
Example: ModbusConnectionl:40001

Connection Status
Monitor connection status: - Connected: Active connection - Disconnected:
No connection - Error: Connection error - Retrying: Attempting to reconnect

Communication Diagnostics

Diagnostic tools: - Traffic Monitor: View communication traffic - Error Log:
Communication errors - Performance Metrics: Response times, throughput
- Status Indicators: Visual connection status

Security Configuration

The Security module manages user accounts, roles, and permissions.

Security Editor

1. In Project View, expand Security
2. Double-click Security to open editor
3. Configure users, groups, and roles

User Management

Creating Users

1. Click Users tab
2. Click Add User
3. Configure user properties:

User Properties: - Username: Unique username (required) - Full Name:
User’s full name - Email: Email address - Password: User password (SHA-
256 hashed) - Active: Enable/disable user account - Roles: Assigned roles -
Groups: Group memberships

17

User Roles Roles define permission sets: - Administrator: Full system
access - Operator: Operational access, limited configuration - Viewer: Read-
only access - Engineer: Configuration access - Custom Roles: User-defined
roles

Group Management
Groups organize users and inherit permissions:

1. Click Groups tab
2. Click Add Group
3. Configure group:
e Name: Group identifier
e Description: Group description
o Parent Group: Hierarchical grouping
e Members: Users in group
« Roles: Roles assigned to group

Permission System

Permissions control access to resources:

Permission Types: - View: Read-only access - Control: Write/control ac-
cess - Configure: Configuration access - Admin: Administrative access

Resource Types: - Tags - Screens - Scripts - Alarms - Communication - System
settings
Access Levels

Tags and components can have access levels: - Public: No authentication re-
quired - Operator: Operator role or higher - Engineer: Engineer role or higher
- Administrator: Administrator only

Authentication

Users authenticate with: - Username/Password: Standard authentication -
Session Management: Active session tracking - Timeout: Automatic logout
after inactivity

Audit Trail

Security events are logged: - Login/Logout: User authentication events - Per-
mission Denials: Access denied events - Configuration Changes: Security
configuration changes - User Actions: Significant user actions

18

Schedules and Automation

Schedules automate script execution and tasks.

Schedule Editor

1. In Project View, expand Schedules
2. Double-click Schedules to open editor
3. Create and manage schedules

Schedule Types
One-Time Schedule

o Execute once at specified time
e Use for: Initialization, one-time tasks

Daily Schedule

o Execute daily at specified time(s)
e Use for: Daily reports, maintenance tasks

Weekly Schedule

o Execute on specific days of week
o Use for: Weekly summaries, recurring tasks

Monthly Schedule

o Execute on specific days of month
o Use for: Monthly reports, billing cycles

Creating Schedules

1. Click Add Schedule
2. Configure schedule properties:

Basic Properties: - Name: Schedule identifier - Description: Sched-
ule description - Type: One-Time, Daily, Weekly, Monthly - Enabled:
Enable/disable schedule

Timing Properties: - Start Time: When to start execution - End Time:
When to stop (if applicable) - Scan Cycle: Execution interval (ms) - Days:
Days of week/month (for weekly /monthly)

Execution Properties: - Script: Lua script to execute - Parameters: Script
parameters - Priority: Execution priority (1-100) - Retry: Retry on failure -
Max Execution Time: Timeout limit

19

Script Selection

When creating a schedule: 1. Click Select Script 2. Browse available scripts
3. Select script 4. Configure script parameters (if any) 5. Script executes at
scheduled times

Schedule Status

Monitor schedule status: - Active: Schedule is running - Inactive: Schedule
is disabled - Executing: Currently running - Error: Execution error occurred
- Completed: Execution finished

Schedule History

View execution history: - Execution Log: Past executions - Success/Failure:
Execution results - Execution Time: When executed - Duration: How long
execution took

Historical Data (Historian)

The Historian module configures data collection and storage for trending and
analysis.

Historian Editor

1. In Project View, expand Historian
2. Double-click Historian to open editor
3. Configure data collection

Data Collection Configuration
Tag Selection

1. Select tags to collect
2. Tags can be added individually or in groups
3. Configure collection settings per tag

Collection Settings Sampling Rate: - Periodic: Sample at fixed interval
- On Change: Sample when value changes - On Change with Deadband:
Sample on significant change - Rate of Change: Sample based on rate of
change

Storage Settings: - In-Memory Buffer: Circular buffer size - Persistent
Storage: Archive to disk - Compression: Data compression settings - Re-
tention: How long to keep data

20

Deadband Configuration

Deadband prevents excessive data collection: - Absolute Deadband: Value
must change by fixed amount - Percent Deadband: Value must change by
percentage - Rate Deadband: Rate of change threshold

Data Storage

Storage Options: - Circular Buffer: In-memory ring buffer - File Archive:
Persistent file storage - Database: Database storage (if configured) - Com-
pression: Compress archived data

Retention Policy: - Time-Based: Keep data for X days - Size-Based: Keep
until storage limit - Automatic Cleanup: Remove old data

Data Retrieval

Retrieve historical data for: - Trending: Display in TrendView components -
Reports: Generate reports - Analysis: Data analysis - Export: Export to
external formats

Integration with Trends

Historical data is used by TrendView components: 1. Configure TrendView
on screen 2. Select tags to trend 3. Set time range (real-time or historical) 4.
TrendView displays data from historian

Building and Deploying
Before deploying to Runtime, projects must be built (compiled).

Building a Project

1. Build — Build Project (or Ctrl+B)
2. Build process:

o Validates project configuration

o Compiles resources

o Generates deployment package

e Creates QML files for Runtime

o Packages all assets
3. Monitor build progress in Output tab
4. Build errors displayed in Qutput tab

Build Output

Build creates: - Deployment Package: Complete project package - QML
Files: Runtime visualization files - JSON Configuration: Project configura-

21

tion - Resource Files: Images, fonts, etc.

Build Validation

Build process validates: - Tag References: All tag references valid - Screen
References: All screen references valid - Script Syntax: Lua scripts compile
- Communication Config: Valid communication settings - Security Config;:
Valid security settings

Build Errors

If build fails: 1. Check Output tab for errors 2. Fix reported issues 3. Rebuild
project 4. Common issues: - Invalid tag references - Missing files - Syntax errors
in scripts - Invalid addresses

Cleaning a Project

Build — Clean Project: - Removes build artifacts - Cleans temporary files -
Prepares for fresh build

Deployment to Device
Download to Device

Download — Download to Device
Select target device

Configure deployment settings
Transfer project package

Verify deployment

CU W=

Device Requirements Target device must have: - AccuTrack Runtime in-
stalled - Network connectivity (for network deployment) - Sufficient storage
space - Required permissions

Upload from Device

Upload — Upload from Device: 1. Connect to device 2. Select project to
upload 3. Download project package 4. Open in Designer

Device Management

The Device Manager helps discover and manage industrial devices.

Device Manager Tab

Access via Project View — Devices tab.

22

Device Discovery
Scanning for Devices

1. Click Scan for Devices

2. Configure scan parameters:
e Protocol: Modbus, OPC UA, etc.
o IP Range: Network range to scan
e Port: Communication port
e Timeout: Scan timeout

3. Start scan

4. Discovered devices appear in list

Modbus Scanner For Modbus devices: 1. Select Modbus protocol 2. Con-
figure network settings 3. Scan discovers: - Device addresses - Available registers
- Device information

Device Configuration
Adding Devices Manually

1. Click Add Device
2. Configure device:
e« Name: Device identifier
o Type: Device type
e Protocol: Communication protocol
e Address: Network address
e Port: Communication port
3. Test connection
4. Save device

Device Status
Monitor device status: - Omnline: Device is connected - Offline: Device is
disconnected - Error: Communication error - Unknown: Status unknown

Device Information

View device details: - Device ID: Unique identifier - Firmware Version:
Device firmware - Capabilities: Supported features - Registers: Available
data points

Tips and Best Practices
Project Organization

1. Naming Conventions: Use consistent naming

23

o Tags: Tankl_Level, Pumpl_Status

e Screens: MainScreen, AlarmScreen

e Scripts: StartupScript, AlarmHandler
2. Folder Structure: Organize by function

e Group related tags

o Organize screens by area

e Separate scripts by purpose
3. Documentation: Document complex configurations

e Add descriptions to tags

o Comment scripts

e Document screen purposes

Tag Management

1. Tag Naming: Use descriptive names
« Include location/equipment
e Include measurement type
o Use consistent abbreviations
2. Tag Organization: Group related tags
e Use tag tables for logical groups
e Organize by process area
o Separate I/O from memory tags
3. Tag Validation: Validate early
o Check addresses before deployment
o Verify data types
o Test tag connections

Screen Design

1. Layout: Design for clarity
e Group related information
o Use consistent positioning
e Follow operator workflow
2. Colors: Use standard conventions
e Red: Alarm, Stop
e Green: Normal, Running
e Yellow: Warning, Caution
e Blue: Information
3. Components: Use appropriate components
e Match component to data type
o Use industrial components for equipment
e Provide clear visual feedback
4. Navigation: Make navigation intuitive
e Clear navigation paths
e Breadcrumbs or menu bars
e Quick access to critical screens

24

Scripting

1. Performance: Write efficient scripts
o Minimize tag reads/writes
o Use appropriate scan rates
e Avoid blocking operations
2. Error Handling: Always handle errors
o Use pcall for risky operations
e Log errors appropriately
e Provide fallback behavior
3. Modularity: Break into functions
e Reusable functions
e Clear function names
e Single responsibility

Security

1. Access Levels: Set appropriate levels
e Public for read-only displays
e Operator for control actions
o Engineer for configuration
2. User Management: Follow best practices
e Strong passwords
o Regular password changes
e Disable unused accounts
3. Audit Trail: Enable logging
e Track important actions
e Monitor access attempts
o Review logs regularly

Communication

1. Connection Management: Configure properly
e Appropriate timeouts
o Retry settings
e Error handling
2. Address Mapping: Map addresses correctly
e Verify device addresses
o Test connections
e Document mappings
3. Performance: Optimize communication
o Group tag reads
o Use appropriate scan rates
e Monitor traffic

25

Testing

1. Test Before Deployment: Always test
o Test tag connections
e Test screen navigation
e Test scripts
o Test alarms
2. Incremental Development: Build incrementally
o Add features one at a time
o Test each addition
o Verify before proceeding
3. Backup: Keep backups
e Regular project backups
o Version control (if possible)
e Archive old versions

Troubleshooting
Common Issues
Project Won’t Open Symptoms: Error opening project file

Solutions: 1. Verify file is valid .isc file 2. Check file permissions 3. Verify
project structure is intact 4. Try opening backup version

Tags Not Updating Symptoms: Tag values not changing

Solutions: 1. Check communication connection status 2. Verify tag addresses
are correct 3. Check device is online 4. Verify tag data types match 5. Check
communication scan rate

Screen Components Not Displaying Symptoms: Components missing
or not visible

Solutions: 1. Check component visibility property 2. Verify component is
not behind another 3. Check Z-order/layering 4. Verify screen size is correct 5.
Check component position is on screen

Script Errors Symptoms: Scripts not executing or errors

Solutions: 1. Check script syntax in editor 2. Verify tag names are correct
3. Check script execution context 4. Review console output for errors 5. Test
script functions individually

Build Failures Symptoms: Build process fails

26

Solutions: 1. Check Output tab for specific errors 2. Verify all referenced files
exist 3. Check tag references are valid 4. Verify script syntax 5. Clean project
and rebuild

Communication Errors Symptoms: Cannot connect to devices

Solutions: 1. Verify network connectivity 2. Check IP addresses and ports 3.
Verify device is powered and online 4. Check firewall settings 5. Verify protocol
settings match device 6. Test with device manufacturer’s tools

Alarm Not Triggering Symptoms: Alarms not activating when expected

Solutions: 1. Verify alarm condition is correct 2. Check tag value is updating
3. Verify threshold values 4. Check deadband settings 5. Verify alarm is enabled
6. Check alarm priority/severity

Getting Help

Documentation: Review this guide
Console Output: Check Output and Debug tabs
Error Messages: Read error messages carefully
Logs: Review application logs
Support: Contact support with:

e Error messages

e Steps to reproduce

e Project configuration

e System information

GU o=

Debugging Tips
1. Use Console: Print debug information
print ("Debug: Tag value = " .. tagValue)
Check Properties: Verify component properties
Test Incrementally: Test one feature at a time
Use Breakpoints: (If available) Set breakpoints in scripts

Monitor Tags: Use tag monitor to verify values

A T

Check Connections: Verify all connections are active

Appendix
Keyboard Shortcuts

27

Action Shortcut

New Project ~ Ctrl+N
Open Project Ctrl+0
Save Project Ctrl+S
Build Project Ctrl+B

Close Tab Ctrl+wW
Copy Ctrl+C
Paste Ctrl+Vv
Delete Delete
Undo Ctrl+Z
Redo Ctrl+Y

File Extensions

e .isc - AccuTrack project file
e .lua - Lua script file

e .json - Configuration files

e .qml - QML screen files

Project File Locations

Projects are typically stored in: - Windows: %USERPROFILEY%\Documents\AccuTrack\Projects\
- Linux: ~/Documents/AccuTrack/Projects/

Support Resources

¢ User Guide: This document

¢ Requirements Specification: See SRS document
¢ Module Documentation: See ReadMe files

¢ Code Documentation: Inline code comments

End of User Guide

For technical specifications and architecture details, refer to the Requirements
Specification (SRS) document.

28

	AccuTrack Designer User Guide
	Table of Contents
	Introduction
	What is AccuTrack Designer?
	Key Features

	Getting Started
	System Requirements
	First Launch
	Creating Your First Project

	User Interface Overview
	Main Window Layout
	Key Interface Components
	Menu Bar

	Project Management
	Project Structure
	Creating a New Project
	Opening a Project
	Saving a Project
	Closing a Project
	Recent Projects

	Working with Tags
	Understanding Tags
	Tag Data Types
	Creating Tags
	Tag Table Editor
	Tag Addressing
	Tag Validation
	Using Tags in Screens

	Creating HMI Screens
	Screen Editor
	Screen Canvas
	Adding Components
	Component Properties
	Common Component Operations
	Screen Properties
	Screen Templates
	Saving Screens

	Using Components
	Component Categories
	Adding Components to Screens
	Component Tag Binding
	Component Events
	Component Styling
	Component Libraries

	Scripting with Lua
	Script Editor
	Creating Scripts
	Lua Script Structure
	Accessing Tags from Scripts
	Script Execution Contexts
	Script Functions
	Script Scheduling
	Script Debugging
	Script Best Practices

	Configuring Alarms
	Alarm Types
	Creating Alarms
	Alarm Editor
	Alarm States
	Alarm Actions
	Alarm History
	Alarm Display

	Communication Setup
	Supported Protocols
	Communication Module Editor
	Modbus Configuration
	OPC UA Configuration
	Tag Mapping
	Connection Status
	Communication Diagnostics

	Security Configuration
	Security Editor
	User Management
	Group Management
	Permission System
	Access Levels
	Authentication
	Audit Trail

	Schedules and Automation
	Schedule Editor
	Schedule Types
	Creating Schedules
	Script Selection
	Schedule Status
	Schedule History

	Historical Data (Historian)
	Historian Editor
	Data Collection Configuration
	Deadband Configuration
	Data Storage
	Data Retrieval
	Integration with Trends

	Building and Deploying
	Building a Project
	Build Output
	Build Validation
	Build Errors
	Cleaning a Project
	Deployment to Device
	Upload from Device

	Device Management
	Device Manager Tab
	Device Discovery
	Device Configuration
	Device Status
	Device Information

	Tips and Best Practices
	Project Organization
	Tag Management
	Screen Design
	Scripting
	Security
	Communication
	Testing

	Troubleshooting
	Common Issues
	Getting Help
	Debugging Tips

	Appendix
	Keyboard Shortcuts
	File Extensions
	Project File Locations
	Support Resources

